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Abstract

Closing the sense-decide-act loop onboard a space-
craft without intervention from the ground will open
up tremendous new opportunities in planetary science,
space physics, and earth science. Although spacecraft
have long been able to make decisions based on self-
preservation, e.g., entering safe mode in response to
a sensor out-of-bounds, they have lacked the ability to
detect and respond to complex patterns and events that
are relevant for science purposes. The Autonomous
Sciencecraft Constellation (ASC) experiment, which
will fly onboard the Air Force’s TechSat-21 constel-
lation (an unclassified mission scheduled for launch
in 2004), will demonstrate the use of onboard science
analysis and replanning to increase science return.

keywords: onboard science, spacecraft autonomy,
SAR, change detection, planning, geological feature
recognition.

1 Introduction

With current approaches to space exploration, data
are downlinked to the ground, analyzed by humans,
and then new commands are uplinked to the space-
craft. With this approach, bandwidth constraints and
light-time latencies pose significant obstacles to reac-
tive, opportunistic science. As examples of missed sci-
entific opportunities, images from the Voyager mis-
sions serendipitously showed volcanic eruptions on Io
and new cryo-volcano features on Triton that had
not been seen elsewhere in the Solar System, but no
follow-up observations of these high-value science tar-
gets were possible. Similarly, the Gallileo spacecraft
discovered the first asteroid (Ida) having its own moon
(Dactyl), but additional measurements that would
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have been invaluable for more precisely determining
the orbit of the asteroidal moon, and hence composi-
tion of the main asteroid were not made [17].

NASA autonomy demonstrations, such as the Re-
mote Agent Experiment [21], which executed for sev-
eral days onboard the NASA Deep Space One mission,
and Three Corner Sat (3CS) [8], which is scheduled for
launch in 2002, have focused on planning and action,
i.e., maintaining the spacecraft in a desired internal
state, sequencing lower-level steps together to achieve
higher-level goals, and executing plans in a reliable
fashion. Although such demonstrations provide valu-
able milestones in the effort to produce more capable
spacecraft, the level of sensory interpretation in these
experiments, i.e., the perception phase, has been rela-
tively low. For example, in the RAX experiment, sens-
ing involved checking the state of a switch (“I told the
camera to turn on, is it on now?”). However, some
of the most compelling arguments for autonomy re-
quire that more human-like perceptual capabilities be
developed and deployed onboard spacecraft.

The Autonomous Sciencecraft Constellation (ASC)
experiment, which is to fly onboard TechSat-21, will
flight demonstrate that a remote system can analyze
its incoming data streams and autonomously detect
and respond to complex spatial objects and change
events, which will enable timely onboard decisions
and actions leading to greatly increased science return.
ASC will also demonstrate the value of an integrated
autonomous mission using onboard science analysis,
replanning, robust execution, model-based estimation
and control, and formation flying. The ASC concept
has been selected for flight on the Techsat-21 mission
and the necessary software is currently being matured
and brought into flight readiness. Key Techsat-21
design reviews occur in Spring 2001 to Spring 2002,
with final delivery of the spacecraft and software in
September 2003. Nominal launch date is September
2004. The NASA New Millennium Space Technology



6 Project has selected the ASC concept for a Phase-A
award. A comprehensive description of the ASC ob-
jectives and plan is given in [7]. Here, we will focus
more specifically on the onboard science components
of ASC.

Section 2 provides an overview of the TechSat-21
mission and the onboard instruments and computing
resources that will be available. FEach of the three
spacecraft will carry an X-band synthetic aperture
radar. Section 3 describes the first step in the on-
board science analysis, which is to convert the raw,
demodulated T and Q returns recorded by the radar
into SAR imagery (possibly at reduced resolution).
Currently, we are using X-band SAR data of Earth,
which was collected by the X-SAR instrument flown
with SIR-C on several space shuttle missions in the
mid 1990’s [15], as a surrogate for actual TechSat-21
data. Three types of science processing algorithms are
under consideration for inclusion as part of the flight
experiment: recognition of static geological features,
change detection, and a discovery/focus of attention
algorithm that can identify generically “interesting”
regions within a scene. These algorithms are described
in Sections 4-6.

Results produced by the science processing algo-
rithms will be used to establish new system-level goals.
In early phases of the mission, the range of space-
craft reactions will be limited to more conservative re-
sponses such as prioritizing regions around detected
features for early downlink. Success in these early
tests will enable more aggressive reactions to be eval-
uated later in the mission, for example, downlinking
only data summarizations (e.g., feature catalogs) or
data for regions where change has been detected. Al-
though the scientist would never like to discard data,
the realities of constrained power and communication
bandwidth lead to a situation in which doing so can
provide greater science value. Finally, onboard deci-
sions that autonomously alter the planned set of ob-
servations in response to high-value science targets,
including possibly reconfiguring the constellation, will
be considered.

2 Mission Overview

The Air Force Research Laboratory (AFRL) has
initiated the TechSat-21 program to serve as a proof
of concept for a new class of space missions. The new
paradigm seeks to reduce costs and increase system
robustness and maintainability by distributing func-
tionality over several micro-satellites flying in forma-
tion. The distributed functionality includes process-
ing, command and control, communications, and pay-
load functions. A chief objective is for the system

of micro-satellites to in effect function as a ”virtual”
satellite, which can be controlled and tasked as a sin-
gle satellite. TechSat-21 is scheduled for a late 2004
launch and will fly three satellites in a near circular
orbit at an altitude of 600 Km. The primary mission is
one-year in length with the possibility for an extended
mission of one or more additional years. During the
mission lifetime the cluster of satellites will fly in var-
ious configurations with relative separation distances
ranging from approximately 100 meters to 5 km. One
of the objectives of TechSat-21 is to assess the utility
of the space-based, sparse-array aperture formed by
the satellite cluster. For TechSat-21, the sparse array
will be used to synthesize a large radar antenna. Three
modes of radar sensing are planned: synthetic aper-
ture radar (SAR) imaging, moving target indication
(MTI), and geo-location.

The principal processor onboard each of the three
TechSat-21 spacecraft is a BAE Radiation hardened
175 MIPS, 133MHz PowerPC 750 running the OSE
4.3 operating system from Enea Systems. OSE was
chosen because it is inherently message passing based
and particularly suitable for distributed applications.
Each satellite will have 256 kbytes of EEPROM for
boot loads and 128 Mbytes of SDRAM. Communica-
tions will be through a Compact PCI bus. For storage
of payload data and some large flight software compo-
nents 8 disk drives per spacecraft will be used. The
ASC onboard flight software includes several auton-
omy software components:

e Onboard science algorithms that will perform
SAR image formation, analyze the resulting im-
age data, generate derived science products, and
detect trigger conditions such as science events,
“interesting” features, and change relative to pre-
vious observations.

o Model-based mode identification and execution
(MI-R) that uses component-based hardware
models to analyze anomalous situations and to
generate novel command sequences and repairs.

¢ Robust execution management software using the
Spacecraft Command Language (SCL) [12] pack-
age to enable event-driven processing and low-
level autonomy .

e The Continuous Activity Planning, Scheduling,
and Replanning (CASPER) [6] planner that will
replan activities, including downlink, based on
science observations in the previous orbit cycles.

¢ The ObjectAgent and TeamAgent cluster man-
agement software will enable the three Techsat-
21 spacecraft to autonomously perform maneu-
vers and high precision formation flying to form



a single virtual instrument.

3 Omnboard SAR Image Formation

The image formation module will create a (possi-
bly reduced resolution) SAR image onboard the space-
craft from the raw phase history (demodulated I and
Q returns). For the ASC demonstration, we envision
only forming a few images per orbit cycle. Although
special-purpose real-time SAR. processors have been
developed (at least for airborne systems) [23], we will
carry out the necessary calculations on the general
purpose flight processor. Our baseline calculations
show that a 10-meter by 10-meter resolution image
can be formed in approximately 18 seconds (with full
processor utilization). A 2-meter by 2-meter resolu-
tion image would require approximately 45 minutes,
which still leaves some margin for making decisions
within a 90 minute orbit cycle. Note, however, that
due to rotation of the Earth between orbits, obtaining
imagery of the same region on the ground from con-
secutive orbit passes, requires that the first orbit use
a west-looking imaging geometry and the second pass
use an east-looking imaging geometry.

For development and ground-based demonstration
purposes, we will use X-SAR data as a surrogate for
actual TechSat-21 radar data. The X-SAR instrument
was developed under joint sponsorship of the German
and Italian governments and was flown, along with the
NASA-developed SIR-C (Spaceborne Imaging Radar-
C) radar, on several space shuttle missions in the mid-
1990’s [15]. X-SAR data of several regions of scientific
interest including Hawaii, Brazil, and Bangladesh has
been obtained from the DLR in both raw and pro-
cessed forms.

The first step in the onboard science processing is
to convert raw data into image form. Although the
ground-based processing of the X-SAR data tapes is
described in [2], the software was developed for special
purpose hardware, so it is not readily available for our
purposes. We have proceeded to develop an imple-
mentation of the processing based on the description
in [2]. Currently, we have implemented only the range
compression step, which involves applying a matched
filter (linear frequency modulated chirp) to each line
of data (refer to discussion in [19]). The chirp pa-
rameters are obtained from X-SAR header files [22]
to precisely match the characteristics of the transmit-
ted signal. Matched filtering is implemented using the
FFT technique, so the complexity of the range com-
pression computation is O{(nmlog(n)), where m is the
number of range lines and n is the number of samples
per range line.

A comparison of the image produced with our cur-

rent processing implementation and the correspond-
ing D-PAF ground-processed product is shown in Fig-
ure 1. Note that the onboard image is only single look,
while the ground-processed image is an average of mul-
tiple looks; hence, the onboard image contains signif-
icantly more speckle. Also, the onboard image has
not been radiometrically calibrated or focused along
track. Nevertheless, the onboard image is already of
sufficient quality to identify major features such as the
river and other water in the scene. After image for-
mation, several types of science analyses can be per-
formed depending on the current objective.

4 Static Feature Recognition

The ability to autonomously analyze an image to
identify specific geological features such as volcanoes,
craters, graben, and boulders is needed for a broad set
of future missions. For the ASC experiment, a combi-
nation of statistical pattern recognition and computer
vision techniques will be used to identify features such
as volcanoes, lakes, and iceberg fragments.

Rather than hand-coding detectors for each spe-
cific object, we approach the problem from a statisti-
cal learning point of view. The learning part of the
algorithm uses examples provided by a scientist to
generate automatically an efficient model for detect-
ing the target object across a range of scales [5] or
across a range of variations in appearance [3]. The
learning phase will be carried out on the ground us-
ing surrogate data (such as X-SAR) or data that will
be downlinked from TechSat-21 in the early phases of
the mission. The models that are learned can then
be uplinked to the spacecraft and used to search for
additional instances of the target object.

One type of object model that will be considered
for use in ASC is the continuously-scalable detector
(CSD) described in [5]. These detectors provide a
principled extension of matched filtering to filtering
over a continuous scale space. The advantages of
matched filtering (or template matching as it is more
commonly known in the computer vision and pattern
recognition literature) are well known: the procedure
is optimal for detecting a known signal in an addi-
tive white noise background and the method often
works well even when these conditions do not com-
pletely hold. CSDs are closely related to the steerable-
scalable-deformable filtering ideas developed by Free-
man and Adelson [10], Perona [11], and others, as
well as to the parametric feature detection work of
Nayar, Baker, and Murase [18]. CSDs are ideal for
features that are rotationally invariant such as volca-
noes and craters. However, the basic method can be
extended to handle features with a preferred orien-
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Figure 1: Rio Negro, Brazil: (a) image produced from raw X-SAR data by our current onboard image formation
module. (b) corresponding image produced by the DLR D-PAF ground processing. Note that the DLR D-PAF
image is an average of multiple looks and hence shows significantly less speckle.

tation such as graben. Merging CSD (or more gener-
ally continuously-deformable detectors) with the prin-
cipal components analysis (PCA) based approach de-
veloped in [3] will potentially enable recognition of a
more diverse set of objects at various rotations and
scales.

Figure 2 illustrates the basic idea behind the CSD,
which is to use linear basis functions to approximately
represent an object family. The family is formed by re-
sampling a prototype example at different pixel spac-
ings to produce family members at scale 1, 1.01, 1.02,
etc. Since there is not much variation from one family
member to the next, it is clear that the family has sig-
nificant redundancy that can be compressed out. The
basis functions, which are derived via singular value
decomposition (SVD) of the family, provide a compact
means to approximately represent the entire family.

5 Change Detection

In addition to calculations based on a single im-
age, the onboard science analysis software will include
change detection algorithms that compare images of
the same region taken at different times. The change
detection capability is particularly relevant for capture
of short-term events at the finest time-scale resolu-
tions without overwhelming onboard caching systems
and for compressing long-term ”monitoring” observa-
tions in which changes are infrequent. For space sci-
ence missions, example applications include tracking
atmospheric changes on Jupiter, Neptune, or Triton

(from optical image data), tracking ice plate move-
ment on Europa, monitoring known (and identifying
new) volcanoes on Io, capturing fine time-scale events
such as jet formation on comets or phase transitions in
ring systems, and detecting new cratering on planets
and moons. To detect change, we will test for sta-
tistically significant differences in derived descriptors
such as region sizes, locations, boundaries, and his-
tograms, as well as in the raw pixel data. The lat-
ter case is complicated by the need to ensure that
the two images are precisely co-registered. In part,
the orbit repeatability and small absolute positional
uncertainty of the TechSat-21 group will help insure
co-registration. Since the magnitude of change neces-
sary for the software to declare a trigger event can be
specified as a parameter, some degree of robustness to
image misalignment will be built in.

We have developed a prototype for detecting change
that is based on segmenting approximately-registered
“before” and “after” images and comparing gross
statistics of the segmented regions. Figure 3 shows a
segmentation of an X-SAR image of the Tungi region
in Bangladesh into water and non-water. By compar-
ing two such segmentations, for example by monitor-
ing the number of pixels labeled as water in the be-
fore and after images, events such as flooding can be
detected. Similar methods will be used to segment re-
gions of new lava flow from images taken over Hawaii.

The segmentation algorithm consists of two parts:
(1) an unsupervised intensity based clustering step us-



Figure 2: (a) Family of craters constructed by resampling the prototemplate (upper left corner) at finer pixel
spacings. (b) First three basis functions obtained through singular value decomposition (SVD) of the crater
family. (¢) Corresponding interpolating functions as a function of the continuous scale parameter. On the z-axis,
0 corresponds to scale = 1 and 100 corresponds to scale = 2. The y-axis is unitless. The match of an image patch
with the template crater at any scale from 1 to 2 can be obtained by computing the inner product of the patch
with the three basis functions and combining the results according to the interpolating functions.

ing the well-known k-means clustering algorithm [1,
16] and (2) a Markov Random Field model that takes
into account the identity of neighbors to produce a
labeling that is spatially more smooth than the pure
intensity-based approach. The intensity-based com-
ponent does not depend on the image being correctly
radiometrically calibrated, which can be both an ad-
vantage and a disadvantage. If water is present in the
scene, then the lowest intensity class identified by the
clustering algorithm will correspond to water, but if
there is no water in the scene the lowest intensity class
may be another type of landcover (e.g., shadow or bar-
ren field). With radiometric calibration, the average
intensity of the various segments could be compared
with statistical data on radar backscatter from wa-
ter as a function of wavelength and incidence angle to
make a more informed decision.

Having change-based triggers will enable key sci-
ence events to be captured at high temporal (and
spatial) resolution without overwhleming the onboard
storage capacity. A revolving buffer onboard will
cahce several days worth of images of several sites
that the spacecraft is monitoring. These images will
be collected at the highest spatial and temporal data
rates that can be supported by the instrument and
solid state recorder. Each day when new images are
collected, the oldest images willbe pushed out of the
buffer (discarded). However, if the onboard analy-

sis software detects that a major change has occurred,
the entire buffer will be latched (preserved) and trans-
ferred to a safe area for eventual downlink. In this way,
the scientists will be able to see the complete history
leading up to the point where change was significant
enough to be flagged by the onboard system. Days
and days of images where nothing happened will not
need to be kept onboard or downlinked, which will
lead to a significant increase in the science value that
can be returned on a finite-capcity downlink channel.

6 Discovery

Given the increasingly large volumes of data being
collected by spacecraft, there is an increasing need for
algorithms that can automatically analyze the data
streams and focus the spacecraft’s attention on “in-
teresting” or salient objects within the data. To com-
plement the work on developing recognizers for spe-
cific geological objects, we have also begun to consider
generic discovery algorithms [4] that can find objects
whose appearance is not known in advance. This ca-
pability will be invaluable as spacecraft venture to to-
tally new environments such as Pluto, the surface of
Titan, and the subsurface of Europa.

The use of the word “interesting” to describe the
type of objects a discovery algorithm should find is a
bit loaded since two observers with specific questions
and hypotheses in mind may find that completely dif-
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Figure 3: (a) X-SAR image of Tungi region in Bangladesh. (b) Automatic segmentation of the same region.
Water regions are associated with the cyan (light-gray in non-color version) labeling. By monitoring counts of
pixels labeled as water, ASC will detect changes such as flooding.



ferent portions of an image are interesting. We do not
deal this type of top-down, goal-driven interpretation
of “interesting”. Instead, we take a bottom-up view.
It is well known that when people look at an image,
their eyes are naturally attracted to certain locations
in the image and these locations are fairly consistent
across subjects. It is this interpretation of “interest-
ing” that we adopt; thus, our work on visual discov-
ery is closely related to efforts by researchers in biol-
ogy and psychophysics who are attempting to under-
stand and model the human focus of attention process
(e.g., [20, 13, 14] and references contained therein).

The basic approach we have developed is also mod-
eled (somewhat more loosely) after the human visual
system. Images are projected into a visually-relevant
subspace using a set of multi-orientation, multi-scale
Gabor filters that model the receptive field properties
of simple cells in the human visual cortex. Within
this filter-response subspace, deviant points are iden-
tified through an adaptive statistical test that com-
pares the filter-space description at a given spatial lo-
cation against a model derived from the local back-
ground. Deviant points are spatially agglomerated
and grouped across scale and orientation. A more
detailed description of the discovery algorithm is pro-
vided in [4].

The basic discovery algorithm has been tested on a
limited, but diverse set of images collected from vari-
ous solar system bodies via a variety of imaging tech-
niques. In these tests, the algorithm was able to au-
tonomously discover craters on the moon, volcanoes
on Venus, sand dunes on Mars, and ice geysers (cryo-
volcanoes) on Neptune’s moon Triton. For all of the
tests, the algorithm used the same parameters and
was not told what to look for. Instead, it was able to
generically identify objects by detecting localized re-
gions whose properties differed significantly from the
surrounding background. An example output of the
system on a Global Surveyor image of Mars is shown
in Figure 4.

In the context of ASC, the discovery capability
will be followed by downlink of the identified inter-
esting regions. These regions will enable a scientist to
quickly pick out objects within the set that he wants
to have re-targeted. Because the algorithm can in
some sense direct the scientist to the most interest-
ing regions, human-in-the-loop decisions can be made
more quickly and more globally. It will no longer be
necessary to wait for every pixel of every image to
be downlinked and examined on ground before a hu-
man decision can be made. This capability, of course,
provides a critical bridge between the current ground-

based decisions and the fully autonomous spacecraft
that decides on its own which follow-up measurements
to make. To be more effective than current prac-
tice, the focus of attention mechanism merely needs
to return patches that could not be easily obtained
by random selection or by a human viewing a highly-
compressed version of the entire image.

7 Conclusion

Perceptive spacecraft and robotic explorers will
open new avenues of scientific investigation and will
significantly impact a broad class of future missions.
The ASC flight demonstration of onboard science pro-
cessing represents a critical first step toward this im-
portant goal. ASC will use the flight processor to form
SAR images onboard the spacecraft. Then the appro-
priate (as determined by the onboard planner) science
analysis algorithms will be applied to the image(s) to
locate specific features, detect changes, or focus at-
tention on interesting areas. The output of the sci-
ence analysis routines will be used to produce new
goals, including requests for follow-up observations.
The planner will close the loop onboard by producing
a new plan for completing the requested observations.
A robust onboard executive will carry out the plans.
Autonomously closing the sense-decide-act loop in this
way will radically increase science return and open up
new opportunities in planetary science, space physics,
and earth science.
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